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INTRODUCTION 

Clustering analysis is a major technique in 

exploratory data analysis. Data to be clustered 

usually represented as objects and a 

characteristic vector for each object. A 

measure of similarity (or dissimilarity) is 

defined between pairs of such vectors. The 

goal is to partition the objects into subsets, 

which are called clusters, so that two criteria 

are satisfied: compactness – objects in the 

same cluster are highly similar to each other; 

and separation - elements from different 

clusters have low similarity to each other. In 

the scope of gene expression data, elements 

are usually genes, the vector of each gene 

contains its expression levels under each of the 

monitored conditions or experiment. Thus, 

applying cluster analysis techniques to gene 

expression data may highlight groups of 

functionally related genes. 
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ABSTRACT 

Clustering is the main step in gene expression analysis.  BIRCH algorithm is able to efficiently, 

incrementally and dynamically cluster data points. However original BIRCH algorithm is limited 

to the Euclidean distance measure. Euclidian distance is not suitable for gene expression 

clustering because it is sensitive to scaling and differences in average expression level while 

correlation is not.  This paper proposes an extended BIRCH algorithm (ExBIRCH) based on 

average Pearson correlation on normalized gene expression dataset. The adaptive possibilistic 

clustering algorithm is directly applied to the produced sub-clusters represented by their CF 

vectors. The proposed algorithm inherits the ability of BIRCH to provide a compact model 

representation. Several clustering algorithms can be applied on leaf nodes of the output tree 

similar to BIRCH however the proposed possibilistic paradigm has a high rejection to outliers 

and is able to deal with existing overlapping between clusters. Also, the use of average 

correlation instead of cluster center, helps discovering non-convex shaped clusters.  

Experimental study shows that the proposed algorithm is able to generate higher quality clusters 

in terms of three assessment measures compared to existing algorithms for clustering gene 

expression data.   
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Clustering 
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Hierarchical clustering algorithms (HCA) 

work either in a top-down manner, by 

repeatedly partitioning the set of elements 

(divisive) such as Divisive Analysis 

(DIANA)
1
, or in a bottom-up fashion 

(agglomerative) by repeatedly merging the set 

of elements such as Agglomerative nesting 

(AGNES)
1
 In each iteration,  a linkage 

strategy
2
  is applied to the newly formed 

clusters, leading to a new dissimilarity 

matrix. The output of HCA is typically 

represented by a dendrogram. In
3
 clustering 

software package along with visualization 

program based on the average-linkage 

hierarchical clustering algorithm has been 

developed. Traditional HCA suffer from the 

defect that they cannot recover bad decisions 

that were done in previous steps (i.e., the 

inability to reunite or split whatever it already 

divided or agglomerated).   

 Hybridized K-means
4
 was heavily 

used in the scope of gene expression data. It is 

simple, fast and avoids the arbitrary choice of 

cluster centroids in traditional k-means. In
5
  

the benefit of intelligent K-means
6
 and kernel 

K-means
7 

 are incorporated to develop  an 

extension of K-means clustering algorithm 

termed as Intelligent Kernel K-means (IKKM). 

IKKM is successfully applied to gene 

expression clustering and was able to 

overcome the drawbacks of traditional K-

means algorithm.  

 Medoid-based algorithms such as 

PAM and CLARA or CLARANS
1
 are 

examples of clustering algorithms that are 

applicable to relational data however gene 

expression data is not relational data. A cluster 

is represented by the most centrally located 

object (instead of cluster centroids). They 

suffer from the same drawbacks of centroids-

based algorithm except they are more robust.  

 CURE clustering algorithm
8
 adopts a 

compromise between centroid-based and all-

point extreme approaches by using multi-

representatives instead of using single 

representative as in CLARANS for example. It 

was applied successfully to gene expression 

data. It is less sensitive to outliers but it can 

deal with large datasets efficiently using 

random sampling or partitioning.  

CLICK is grid-based clustering algorithm that 

seeks to identify highly connected components 

in the proximity graph as clusters.  The 

existence of noise and overlapping in gene 

expression data may force CLICK to merge or 

split clusters unnecessary.  

 Prototype-Based Modified DBSCAN 

(MDB-SCAN)
9
 extends the traditional density-

based algorithm DBSCAN using partitioning 

to reduce its complexity. Both artificial and 

biological datasets were used to evaluate the 

performance of MDBSCAN. The results show 

that MDB-SCAN is more efficient than 

DBSCAN, insensitive to the selection of initial 

prototypes or noise, and it is still able to 

produce the clusters of arbitrary shapes as  

DBSCAN however the quality of produced 

clusters degrade with large number of clusters.  

Self-Organizing Maps (SOM)  is widely used 

as a clustering technique for gene expression 

data
10

. The major drawback of SOM is that the 

number of clusters should be known in 

advance. HDP is a model-based algorithm
11

 

that ensures the robustness to the problem of 

different choices of the number of clusters by 

using the infinite mixture model along with 

HCA.  In
12

  multi-objectives genetic clustering 

is used to deal with multiple overlaps among 

clusters in gene expression data.  Fuzzy 

clustering by Local Approximation of 

Membership (FLAME) in
13

 outperforms K-

means, HCA, fuzzy C-means, and fuzzy 

SOMs. It shows high rejection capability to 

outliers.  Dual-rooted MST along with spectral 

clustering is used in
14

 to allow discovering 

non-convex shaped clusters.      

 In this research study we try to tackle 

several problems that exist in clustering 

algorithms for gene expression data such as 

inefficiency, sensitivity to outliers, bias to 

spherically shaped clusters and the inability to 

deal with existing highly overlapped clusters. 

This paper proposes a new version of BIRCH 

algorithm termed as ExBIRCH that is based on 

average correlation. The possibilistic paradigm 

is applied to the leaf entries of the output tree 

of ExBIRCH. The proposed approach inherits 
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the efficiency of BIRCH in terms of memory 

and computational complexity. Also, it 

reduces its biasedness to spherically shaped 

clusters by avoiding the use of mean square 

objective function. Furthermore, the 

possibilistic paradigm helps dealing with 

expected high overlap between highly 

connected clusters, removing outliers. Also, 

unlike Euclidian distance, the Pearson 

correlation measure is directly applicable to 

high-dimensional datasets.  

 The remainder of this paper is 

organized as follows. Section 2 presents 

related work and necessary background for the 

proposed technique. Section 3 presents the 

proposed technique. In section 4, experimental 

results are discussed. Finally Section 5 

concludes the paper and highlights future 

research directions. 

Related Work 

BIRCH Algorithm
15

 

BIRCH algorithm
15

 introduced two concepts 

for briefly and efficiently summarizing data 

objects: clustering feature (CF) and clustering 

feature tree (CF Tree). Instead of storing all 

Metadata of multiple data objects a CF tree is 

able to summarizes the valuable information 

of incoming data objects by using fixed and 

much smaller space. In BIRCH tree a CF is a 

node element that summarizes data objects 

which are close enough and should appear in 

one group in the final clustering. CF is stored 

as a vector of three values: CF = (N; 


LS  ; 

SS), where N is the number of data objects it 

represents, 


LS  and SS are the linear sum and 

the square sum of the enclosed data objects, as 

follows:  
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Using the CF vectors of produced sub clusters, 

it has been shown that common quality metrics 

can be easily calculated.  In addition, the 

cluster of two disjoint clusters could be easily 

calculated by merging the two CF vectors 

following the Additivity Theorem, as shown 

below: 

 

);;( 21212121 SSSSLSLSNNCFCF 


 (2) 

 The input to the algorithm is a set of N data 

objects and the output is hierarchy of the input 

data. Root node represents the whole data as 

one cluster while nodes in next levels 

correspond to smaller sub clusters. Incoming 

data objects are checked against existing nodes 

starting from root to leaf nodes and inserted in 

the proper CF node incrementally according to 

two thresholds. It has four phases, the first and 

third phase are the mandatory phases while the 

others are optional. In the first phase, data 

objects are inserted into the CF tree, which is 

characterized by two thresholds: branching 

factor B, which indicates the maximum 

number of nodes represented by a non-leaf 

node, and threshold T, which controls the size 

of the leaf-node.  The insertion operation is 

done in a three steps:  

1. Starting from the root, recursively 

descend the CF-tree to find the 

appropriate leaf node.  

2. If the insertion on closest CF leaf 

violates the constraint on the size of a 

leaf node T, a new CF entry will be 

made. If there is no room for a new leaf 

to be established, the parent node will be 

split.   

3. Apply the insertion on the path from the 

selected leaf node back to the root. 

In the rebuilding phase (the second phase), the 

leaf entries in the initial CF tree are scanned 

and a smaller CF tree will be rebuilt by 

removing outliers and clustering crowded sub-

clusters into a large cluster, which will need to 

generate a larger threshold T.  In the third 
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phase, any clustering algorithm can be directly 

applied to the produced sub-clusters 

represented by their CF vectors to produce the 

required number of clusters. As shown above, 

the original data need  to be scanned only once 

in the first phase, which means the whole 

dataset does not have to reside in memory to 

perform BIRCH clustering and this feature 

makes BIRCH efficiently applicable to gene 

expression clustering. In the fourth phase, data 

objects are redistributed to its closest cluster of 

the clusters produced in previous phase, so that 

a set of new clusters is obtained. 

Possibilistic Clustering  

The objective function to be minimized in 

possibilistic c-means (PCM) [16] is as follows:  
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Where upi and θp are the possibilistic 

membership of an object xi  in cluster p and the 

center of  cluster p respectively. βp is an input 

parameter estimated using the average size of 

the p-th initial cluster and stay constant in all 

iteration of PCM. k is the required number of 

clusters. n is the number of objects to be 

clustered. 

The possibilistic C-means algorithm (PCM) 

was proposed to tackle the major drawbacks 

associated with the constrained memberships 

used in algorithms such as the fuzzy C-means 

(FCM). In Possibilistic clustering, the 

constraints on the elements of the membership 

matrix U are relaxed to: 

1) upi Є [0,1] p,I ,  2)
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Recent approach in
17

 uses an adaptive 

approach to dynamically update p . It starts 

with overestimated number of clusters and 

adaptively reduce the number of clusters by 

removing a cluster if it doesn't have an object 

that has a maximum membership in it.  This 

algorithm is modified to allow applying the 

possibilistic clustering using the average 

correlation instead of centers as explained in 

section 2.4.  

 

MATERIAL AND METHODS 

In order to develop an accurate clustering 

algorithm for large gene expression datasets, 

an extended BIRCH algorithm termed 

ExBIRCH is proposed with a modified CF 

vector and distance measure other than 

Euclidian distance. Meanwhile, to address the 

problem of computing the average correlation 

between a gene and a set of genes, the gene 

expression data matrix needs to be normalized. 

Also the CF vector is modified to fit the 

extended BIRCH algorithm (ExBIRCH). 

Finally, we discuss the clustering phase in 

Section 3.4. 

Similarity Measure 

The most common similarity measures in the 

field of bioinformatics are similarity measures 

related to correlation coefficient. Most of them 

have corresponding dissimilarity measures.   

The Pearson's correlation coefficient of two 

random variables x and y is formally defined 

as follows: 

 

  
(4) 

 

Where are the sample mean of x and y respectively, while σx, σy are the sample standard deviation of x and y. It is a measure of how 

well a straight line can be fitted to a scatter plot of x and y. Pearson correlation coefficient falls in [-1, 1]. 

The corresponding dissimilarity measure d(x,y) equals 0.5(1- s(x,y)) and it fall in1. The threshold T for ExBIRCH can be set on the s or d.  
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When Euclidian distance needs to be used as 

dissimilarity measure for gene expression data 

the input matrix need to be normalized in order 

to reduce its sensitivity to scaling and 

differences in average expression level. The 

normalization is done by subtracting the mean 

of the values of each row representing a gene 

expression values (feature vector) from the 

values of this row then the resulting new 

entries are divided by the standard deviation of 

its corresponding row. For input matrix X, 

each entry xij is replaced by 
ixiij xx /)(    

When input gene expression matrix is 

normalized, the computations required for 

computing gene-gene correlations is reduced 

as follows:   
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Proposed Extended BIRCH (ExBIRCH) 

Several research studies showed that the use of 

Pearson correlation coefficient as a similarity 

measure gives a higher performance compared 

to Euclidian distance. A very interesting 

property for normalized matrix is that the 

computation of average correlation between a 

feature vector x and a group of feature vectors 

is reduced to computing the correlation 

between x and the vector representing the 

average of this group. For example, the 

correlation between a feature vector x and 

another two feature vectors y and z can be 

computed as follows: 
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Using this property, the CF vector in BIRCH 

clustering algorithm can be to two values:  

CF = (N, 


LS  ), where N means the number of 

data objects, 


LS  represent the linear sum of 

these data objects.  

We will show how the distance between two 

sub-clusters of two CF vectors represented this 

way.  Also other common quality metrics can 

be computed using the stored CF vectors.  
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The average correlation between a feature vector of a gene represented by 


jX   and a sub cluster represented by 

a vector CF   is computed as follows: 
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Using Eq. (9), the average correlation between two sub clusters represented by CF1 and CF2 is computed as 

follows: 
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Estimating appropriate value for the 

Threshold T 

Appropriate value for the threshold T is 

estimated by analysing the pair-wise 

correlation between genes. For each gene, the 

average correlation between it and a suitable 

number of nearest genes (close to the accepted 

number of objects in a leaf node) is computed. 

A cutting point for estimating the threshold T 

is identified by sorting the genes according to 

its average correlation with their nearest 

neighbours. Then, the gene which has much 

lower average correlation compared to its 

predecessor is identified. The average 

correlation of the predecessor of such gene is 

selected as the minimum average similarity 

between genes in a sub cluster. When T 

corresponds to average similarity then it is a 

lower bound for the average similarity of 

objects (gene) within a leaf node.  

Clustering Leaf Nodes 

Using Eq.
10

 algorithm such as Hierarchical 

clustering based on average linkage strategy 

can be directly applied to leaf nodes. However 

iterative approach is more efficient and can 

recover bad decisions iteratively. We chose the 

possibilistic approach as it is more robust. In 

this section we show how the adaptive 

approach for PCM
17

 can be modified to be 

applicable for our non-centroid case.  In order 

to use the adaptive approach in
17

 the objective 

function in Eq
3
. should be modified to use the 

average similarity instead of distance to a 

center. An artificial center 

pZ  representing a 

cluster Cp of a set of leaf nodes (sub clusters) 

is computed as follows: 
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Where n is the number of leaf nodes to be 

clustered and Ni is the number of objects 

represented by a leaf node number i. The 

memberships can be computed based on Eq.
11

.  

The following is a Possibilistic c-means 

(PCM) like updating equations. The 

memberships are updated in iteration t as 

follows: 
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And βp is computed for each initial cluster p 

from the initial hard membership matrix U 

using an initialization procedure in step 1 of 

Table 1, as follows:  
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where np is the size of the hard cluster p produced in the initialization step. 

In each iteration t, the values of βp(t) are updated as follows: 
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In Eq. (14), the memberships are included without defuzzification. The dominator represents the number of 

clusters which have at least one object with its greatest membership in it.  The parameter α falls in  ]0,∞[ and 

should be fine-tuned. 
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Table 1: Adaptive possibilistic clustering for the leaf nodes of ExBIRCH 

Input:  

 α     /* parameter in eq. (16) for computing  memberships */ 

 ε     /* the threshold controlling the convergence*/ 

 k     /* the number of clusters to be found*/ 

Output:  

U   /* matrix of possibilistic memberships*/  

Begin  

    1. Compute initial hard membership matrix U using initialization procedure  

    2. initialize βp for p=1,2..k using Eq. (12) 

    3. Compute artificial cluster center Zp  for p=1,2..k using Eq. (11) 

    4. set βmin =min βp           

 5. Repeat 

       Store memberships U in U
'
 

       Update U using Eq. (12) 

       Update artificial cluster center Zp using Eq. (11) 

       Update βp using Eq. (14) 

     until )||(|| ' UU                         

 6. Output U 

End  
 

 

RESULTS AND DISCUSSION 

Datasets 

The following two datasets are subjected to a 

set of algorithms in
18

 including k-means, Self 

Organizing Maps (SOM), Hierarchical 

average-link clustering, CLICK, Self 

Organizing Trees (SOTA) 
19

 and αCORR. The 

reported results in
18

 along with the results of 

the proposed clustering algorithm are 

presented in this paper. For each of the chosen 

data sets, 25 runs were executed to get a 

reliable average measure of the validation 

indices for the proposed algorithms at various 

numbers of clusters. Several experiments are 

done for fine tuning the input parameter T for 

each dataset as explained in section 3.3.  When 

the number of clusters k is not very larger than 

the actual number of clusters, appropriate 

values for the parameter  α are around 1
17

. 

 

Table 1: List of Datasets used in our experimental study 

Dataset Ref. no. objects no. 

Features 

True Clusters 

Yeast Cell Cycle (YCC) [3] 698 72 5 

Peripheral Blood Monocytes (PBM) [20] 2329 139 18 

 

Performance measures 

In the following performance analysis of the 

proposed algorithm, the Dunn Index
21

 

Silhouette width
22

 and Adjusted Rand Index
23

 

and are used as assessment measures. Dunn 

Index is a non-linear measure that combines 

the ratio between the largest cluster similarity 

and the smallest intra-cluster similarity in a 

cluster.  The Dun Index lies on [0, +∞] and 

should be maximized.  

The Silhouette Width for a cluster is computed 

as the average silhouette value over all input 

data. The silhouette value of an object i (si) 

combines the average distance between an 

object i and all data items in the same cluster 

and the average distance between i and all data 

items in the closest other cluster. si lies on
1
. 

When si is close to 1, it indicates that the i-th 

sample xi has been well clustered.   
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Adjusted Rand Index is a normalized external 

measure that takes a single clustering result as 

an input, and compares it with a known set of 

class labels to assess the degree of similarity 

between them. It is limited to the interval
1
 and 

should be maximized. 

Experimental Results 

Table 2 shows the values of each validity 

index over all the algorithms under 

comparison on YCC dataset. As we can notice, 

the proposed algorithm outperformed all other 

algorithms for the adjusted rand index, scoring 

more than 69% matching with the true 

classification of the YCC dataset. For Dunn’s 

Index, the proposed algorithm is slightly less 

than CORR, the place for top performance 

under this measure. Finally, the silhouette 

width shows that ExBIRCH was the best 

performing algorithm. Its higher silhouette 

width may account to the match of its 

objective function to the definition of 

silhouette width. 

 

Table 2: Experimental results of the studied algorithms at the true number of clusters (Five) of the true 

solution of YCC dataset 

Algorithm Adjusted rand Index        Dunn Index Silhouette Width 

k-means 0.499 0.212 0.280 

Average Link 0.496 0.255 0.308 

CLICK 0.537 0.246 0.280 

SOM 0.484 0.202 0.239 

SOTA 0.496 0.131 0.253 

αCORR 0.621 0.302 0.413 

ExBIRCH  0.692 0.269 0.472 

 

Table 3 shows the values of each validity 

index over all the algorithms under 

comparison on PBM dataset. As we can 

notice, the proposed algorithm outperformed 

all other algorithms for both the adjusted rand 

index and silhouette width. Also for Dunn’s 

Index, the proposed algorithm is slightly less 

than CORR, the place for top performance 

under this measure. The silhouette width 

results are relatively much higher than the case 

for YCC dataset.  

 
Table 3: Experimental results of the studied algorithms at the true number of clusters (Eighteen) of the 

true solution of PBM dataset 

Algorithm Adjusted rand Index Dunn Index Silhouette Width 

k-means 0.431 0.180 0.132 

Average Link 0.449 0.117 0.184 

CLICK 0.448 0.117 0.125 

SOM 0.386 0.092 0.077 

SOTA 0.438 0.152 0.190 

aCORR 0.469 0.212 0.202 

ExBIRCH 0.471 0.201 0.388 

 

Finally, Table 4 shows the performance of the 

proposed algorithm compared to the other 

algorithms on PBM Dataset for different 

number of clusters. The proposed algorithm 

has higher and more stable performance over 

large number of clusters ranging from 9 to 24.  

This may account to that ExBIRCH breaks the 

dataset into smaller, more coherent units of 

correlated functionality within each leaf node, 

without any distortion or changing gene 

membership across the boundaries of the 

clusters constituting of the true solution.  
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Table 4: Silhouette Width for different number of clusters on PBM Dataset 

 

Biological Discussion 

By applying the online CGI web-based 

application provided by Gibbons
24

 on the 

clusters obtained by using T= 0.90 for 

ExBIRCH and  α = 1, k = 5 for the adaptive 

possibilistic clustering on YCC dataset. The 

proposed algorithm achieves z-score equals 

6.6 which is much better performance 

compared to k-means, Average Link, CLICK, 

SOM and  SOTA which achieve 0.9, 1.8, 2.2, 

0.6 and 1.15 respectively.  This indicates that 

the proposed algorithm was successfully able 

to capture most of the similarity in biological 

functionalities of different genes in YCC 

dataset.  

Conclusion and Future Works 

Clustering gene expression data has several 

challenges. Gene expression data usually 

large, high dimensional, noisy and has missing 

values. Also, existing clusters are highly 

overlapped and not necessary have convex 

shape. This paper presented a scalable 

BIRCH-like algorithm based on average 

correlation for clustering gene expression data 

along with its experimental results and 

analysis. The proposed algorithm inherits the 

efficiency from its parent algorithm BIRCH. 

Also the use of average correlation instead of 

centroids allows dealing with non-convex 

shaped clusters and avoiding drawback of 

using Euclidian distance. The adaptive 

possibilistic paradigm is applied to leaf nodes 

that allow dealing with overlap and give a 

rejection capability to noise.     

        As a future research, the parallel version 

of BIRCH presented in
25

 can be adapted to the 

proposed algorithm to allow dealing with very 

large datasets.  Also, the proposed algorithm 

can be used in developing a biclustering 

algorithm
26

. Finally, the proposed algorithm 

can be adapted to other application areas such 

as the sub-sequences clustering.          
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